235 research outputs found

    The Distance to the Vela Supernova Remnant

    Get PDF
    We have obtained high resolution Ca II and Na I absorption line spectra toward 68 OB stars in the direction of the Vela Supernova Remnant. The stars lie at distances of 190 -- 2800 pc as determined by Hipparcos and spectroscopic parallax estimations. The presence of high velocity absorption attributable to the remnant along some of the sight lines constrains the remnant distance to 250+/-30 pc. This distance is consistent with several recent investigations that suggest that the canonical remnant distance of 500 pc is too large.Comment: To be published in The Astrophysical Journal Letters Figure 1 y-axis labels correcte

    The Role of a Hot Gas Environment on the Evolution of Galaxies

    Full text link
    Most spiral galaxies are found in galaxy groups with low velocity dispersions; most E/S0 galaxies are found in galaxy groups with relatively high velocity dispersions. The mass of the hot gas we can observe in the E/S0 groups via their thermal X-ray emission is, on average, as much as the baryonic mass of the galaxies in these groups. By comparison, galaxy clusters have as much or more hot gas than stellar mass. Hot gas in S-rich groups, however, is of low enough temperature for its X-ray emission to suffer heavy absorption due to Galactic HI and related observational effects, and hence is hard to detect. We postulate that such lower temperature hot gas does exist in low velocity dispersion, S-rich groups, and explore the consequences of this assumption. For a wide range of metallicity and density, hot gas in S-rich groups can cool in far less than a Hubble time. If such gas exists and can cool, especially when interacting with HI in existing galaxies, then it can help link together a number of disparate observations, both Galactic and extragalactic, that are otherwise difficult to understand.Comment: 16 pages with one figure. ApJ Letters, in pres

    On the Physical Origin of OVI Absorption-Line Systems

    Full text link
    We present a unified analysis of the O{\sc vi} absorption-lines seen in the disk and halo of the Milky Way, high velocity clouds, the Magellanic Clouds, starburst galaxies, and the intergalactic medium. We show that these disparate systems define a simple relationship between the O{\sc vi} column density and absorption-line width that is independent of the Oxygen abundance over the range O/H ∼\sim 10% to twice solar. We show that this relation is exactly that predicted theoretically as a radiatively cooling flow of hot gas passes through the coronal temperature regime - independent of its density or metallicity (for O/H ≳\gtrsim 0.1 solar). Since most of the intregalactic O{\sc vi} clouds obey this relation, we infer that they can not have metallicities less than a few percent solar. In order to be able to cool radiatively in less than a Hubble time, the intergalactic clouds must be smaller than ∼\sim1 Mpc in size. We show that the cooling column densities for the O{\sc iv}, O{\sc v}, Ne{\sc v}, and Ne{\sc vi} ions are comparable to those seen in O{\sc vi}. This is also true for the Li-like ions Ne{\sc viii}, Mg{\sc x}, and Si{\sc xii} (if the gas is cooling from T≳106T \gtrsim 10^6 K). All these ions have strong resonance lines in the extreme-ultraviolet spectral range, and would be accessible to FUSEFUSE at z≳z \gtrsim 0.2 to 0.8. We also show that the Li-like ions can be used to probe radiatively cooling gas at temperatures an order-of-magnitude higher than where their ionic fraction peaks. We calculate that the H-like (He-like) O, Ne, Mg, Si, and S ions have cooling columns of ∼1017\sim10^{17} cm−2^{-2}. The O{\sc vii}, O{\sc viii}, and Ne{\sc ix} X-ray absorption-lines towards PKS 2155-304 may arise in radiatively cooling gas in the Galactic disk or halo.Comment: 25 pages, 5 figure

    Variable Interstellar Absorption toward the Halo Star HD 219188 - Implications for Small-Scale Interstellar Structure

    Get PDF
    Within the last 10 years, strong, narrow Na I absorption has appeared at v_sun ~ -38 km/s toward the halo star HD 219188; that absorption has continued to strengthen, by a factor 2-3, over the past three years. The line of sight appears to be moving into/through a relatively cold, quiescent intermediate velocity (IV) cloud, due to the 13 mas/yr proper motion of HD 219188; the variations in Na I probe length scales of 2-38 AU/yr. UV spectra obtained with the HST GHRS in 1994-1995 suggest N(H_tot) ~ 4.8 X 10^{17} cm^{-2}, ``halo cloud'' depletions, n_H ~ 25 cm^{-3}, and n_e ~ 0.85-6.2 cm^{-3} (if T ~ 100 K) for the portion of the IV cloud sampled at that time. The relatively high fractional ionization, n_e/n_H >~ 0.034, implies that hydrogen must be partially ionized. The N(Na I)/N(H_tot) ratio is very high; in this case, the variations in Na I do not imply large local pressures or densities.Comment: 12 pages; aastex; to appear in ApJ

    The Influence of Stellar Wind Variability on Measurements of Interstellar O VI Along Sightlines to Early-Type Stars

    Full text link
    A primary goal of the FUSE mission is to understand the origin of the O VI ion in the interstellar medium of the Galaxy and the Magellanic Clouds. Along sightlines to OB-type stars, these interstellar components are usually blended with O VI stellar wind profiles, which frequently vary in shape. In order to assess the effects of this time-dependent blending on measurements of the interstellar O VI lines, we have undertaken a mini-survey of repeated observations toward OB-type stars in the Galaxy and the Large Magellanic Cloud. These sparse time series, which consist of 2-3 observations separated by intervals ranging from a few days to several months, show that wind variability occurs commonly in O VI (about 60% of a sample of 50 stars), as indeed it does in other resonance lines. However, in the interstellar O VI λ\lambda1032 region, the O VI λ\lambda1038 wind varies only in ∼\sim30% of the cases. By examining cases exhibiting large amplitude variations, we conclude that stellar-wind variability {\em generally} introduces negligible uncertainty for single interstellar O VI components along Galactic lines of sight, but can result in substantial errors in measurements of broader components or blends of components like those typically observed toward stars in the Large Magellanic Cloud. Due to possible contamination by discrete absorption components in the stellar O VI line, stars with terminal velocities greater than or equal to the doublet separation (1654 km/s) should be treated with care.Comment: Accepted for publication in the Astrophysical Journal Lette
    • …
    corecore